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ABSTRACT 

It is shown that a multiple-valued symmetric function has a planar ROMDD 

(reduced ordered multiple-valued decision diagram) if and only if it is a pseudo- 

voting function. It is also shown that the number of such functions is ir_An + r\, 

where r is the number of logic values and n is the number of variables. 

It follows from this that the fraction of symmetric multiple-valued functions that 

have planar ROMDD's approaches 0 as n approaches infinity. Further, for planar 

ROMDD's of symmetric functions, it is shown that the worst case number of nodes 

n ' - - — I and the average number of nodes is n
2\-- — I> when n is large. 

Additionally, multiple-valued Fibonacci functions are examined and conditions 

for planarity in their ROMDD representations are established. 

A preliminary version of this paper has been accepted for publication in the Proceedings of 
the 2'6th Annual International Symposium on Multiple-Valued Logic, May 1996. 
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I. INTRODUCTION 

Conventional computers use the binary number system, which is based upon two 

levels of logic. Computers in the 1940's used relays, which had two stable states, open and 

closed. Tubes and transistors have two stable states, saturation (conducting) and cutoff 

(nonconducting). In conventional VLSI circuits, these two levels are encoded as voltage, 

where 0.0 volts represents a logic 0 and 2.5 to 5.0 volts represents a logic 1. The restriction 

of two logic levels applies throughout the circuit. 

Two logic levels naturally make a binary number system a sensible choice for digital 

computers based on conventional VLSI. However, one disadvantage of the binary number 

system is that numbers require many bits to be represented as binary. For example, the 

decimal number 2048 is represented by the 12 bit binary number 100000000000. A decimal 

number exceeding one million requires at least 20 bits to be represented in the binary number 

system. 

There are also significant disadvantages to binary in implementation. The majority of 

VLSI chip area is devoted to interconnect, i.e. bus lines. Interconnect occupies physical area 

even when not in use. Additionally, the insulation between the wires used for interconnect 

also requires area on the chip. All this area is physical space that cannot be devoted to 

devices. Two levels of logic also place a burden upon chip connecting pins that must maintain 

a minimum size and thickness for strength and reliability. This is referred to as the pinout 

problem. In binary ALU operations, limits are imposed on the speed of arithmetic circuits 

due to the carry (borrow) between digits. 
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The disadvantages of a binary number system are reduced when a multiple-valued 

logic (MVL) number system is implemented. Fewer bits are needed to represent numbers and 

more efficient use is made of interconnect when more than two levels of logic are 

implemented. For example, in a four-valued number system, a single digit may represent four 

logic values (0, 1, 2, 3). The same information representation would require two bits in 

binary, with 04 = 002, 14 = 012, 24 = 102, and 34 = 112. Therefore, from a physical point of 

view, a wire in a four-valued system would carry twice the information of a binary system. 

This would reduce the required chip area for interconnect by one half. There would also be 

a savings in chip area from a reduction in insulation because one half of the area that was 

devoted to insulation between binary wires would no longer be needed with four-valued 

wires. [Ref 1] 

A binary number system presents similar difficulties in representing binary logic 

(Boolean) functions by truth table because the number of bits required increases at an 

exponential rate in relation to the number of function variables. Because of this, a more 

efficient, graphical method of representing Boolean functions has been developed. For more 

than a decade, binary decision diagrams (BDD's) have been used to efficiently represent 

binary (switching) functions. Introduced by Lee [Ref 2] in 1959, and further developed by 

Akers [Ref 3] in 1978, it was not until 1986 with a paper by Bryant [Ref. 4] that BDD's have 

become a predominant data structure for switching function representation. 

The classical representations such as truth tables and Karnaugh maps prove to be 

impractical for large functions as their size increases on the order of 0(2") where n is the 

number of function variables or arguments.   The worst case complexity of a BDD, for 



symmetric functions, has been documented as 0(n2). [Refs. 4,5] 

To construct the BDD for a given function ftxx, x2, ..., x„), a root node is used to 

represent the function itself, and two children nodes are attached representing the 

subfunctions, fi\, x^ ..., x„) and^O, x2,..., x„). To each of these children, two more children 

are attached to represent the assignments to x2, and this is continued until all variables are 

assigned. Each node represents the Shannon's expansion of the Boolean function, 

/ = (*,•" /o)v (xi■■' f\), where / is the index of the node and /0 and/i are the functions of the 

nodes pointed by the 0- and 1-edges [Refs. 6,7]. The terminal nodes represent 0 and 1, the 

only functions independent of all variables. Whenever the same subfunction appears in 

different parts of the diagram, all instances are converged into one node. Also, nodes with 

two identical children are deleted. A BDD representing the function, /= x^x2 + x3x4 is shown 

in Fig. 1. 

As previously discussed, multiple-valued logic exhibits several advantages over binary. 

Multiple-valued logic functions can be represented by multiple-valued decision diagrams 

(MDD's) which are a natural extension of BDD's. MDD's have been treated by Miller [Ref. 

8] and Sasao [Ref. 9]. This thesis expands upon a preliminary version that has been accepted 

for publication [Ref. 10]. It is also an extension of the results on planar MDD's as described 

in Sasao and Butler [Ref. 11]. 

Two types of functions are considered. In the first type, a multiple-valued function, 

f:R" -»/?, wherei?= {0,l,...,r-l}, both the function and the variables take on values from 

R. We denote a function with r = 2 as a switching function. In the second type, 

f.R" -> {0,1}, the function is two-valued, and the variables are r-valued. 



J — X\Xl "+" XiXA 

Root Node 

Terminal 
Nodes 

Figure 1. A binary decision diagram(BDD) representation of /= XjX2 + x3x4. 

An MDD of a function/fa, Xj,..., xj is a directed graph that has a root node (i.e., no 

incoming edges) which represents/ From this node, there are r outgoing edges labeled 0, 

1,..., andr-1 directed to nodes that represent flO, x2,..., x„),J{\, x2,..., x„),..., and^-l, *2> 

..., xX respectively. For each of these nodes, there are r outgoing edges that go to nodes that 

have r outgoing edges, etc. A terminal node is a node with no outgoing edges. It is labeled 

by 0, 1, ..., or r-1, and corresponds to a logic value of the function. An MDD is a data 

structure. To reduce storage requirements, the following rules are applied. 



Merging Rule If two nodes r^ and r\2 represent the same function, they are 

combined into one, as are descendent nodes and edges. 

Elimination Rule If a node r\ x has all descendants going to the same node x\2, 

then T| j is eliminated and all incoming edges to T\ X go to T|2. 

Definition 1 An ordered multiple-valued decision diagram (OMDD) is anMDD in 

which the relative order of any pair of variables is the same for all paths from the root node 

to any terminal node. 

Definition 2 A reduced OMDD or ROMDD is an OMDD in which the merging and 

elimination rules have been applied to the greatest extent possible. 

Figure 2 shows the ROMDD representation of the function in Fig. 1 as f=Xx + X2 

where XX{X^ = 0, 1, 2, and 3 when xpj&cj = 00, 01, 10, and 11, respectively. Notice the 

reduction in nodes from Fig. 1 which is achieved by using multiple-valued logic with r = 4. 

The function of Fig. 2 only requires two variables (n = 2), and thus its ROMDD provides a 

more compact representation over the ROBDD. 

Bryant [Ref. 4] has shown that, for any given ordering of variables, the ROBDD is 

unique. Therefore, regardless of what order the merging and elimination rules are applied, 

the final ROBDD is the same. The same argument applies to ROMDD's. 



f=Xl+X2 From Fig. 1 

X2 — (X3 x4) 

Figure 2. The ROMDD representation of the function in Fig. 1. 

A special type of OMDD is examined in this thesis. As discussed previously, in VLSI, 

a significant source of delay is interconnect, and a significant component of interconnect delay 

occurs at crossings. For example, in field programmable gate arrays (FPGA's), a significant 

source of delay occurs in crossings among interconnections between cells. Via resistance, and 

thus delay, increases as feature size is decreased. For a discussion of circuit implementations 

based on MDD's and the role of crossings in such realizations, the reader is referred to [Refs. 

11,12]. The restrictions in [Refs. 11,12] are adopted in this thesis and restated as follows. 



Restriction 1 

a: All edges are directed downward throughout their length, 

b: All edges emerging from a node are labeled 0, 1,..., r-1 from left to right, 

and 

c: The terminal nodes (representing constant functions) are labeled 0, 1,..., 

r-lfrom left to right. 

Restriction 1(a) precludes, for example, arcs (edges) that extend around the root node 

or terminal nodes (e.g. Fig. 13 of [Ref 11]). It is a simplifying assumption that makes 

uniform the interconnection between levels. Restriction 1(b) and 1(c) are also simplifying 

assumptions. However, they can be removed, enlarging the set of functions for which the 

results apply. For now, these restrictions allow a tractable analysis. 

Definition 3 An OMDD is planar if it can be drawn without crossings. 

Because of their importance in logic design, we consider symmetric functions. 

Symmetric functions are indispensable in arithmetic circuits; indeed, such circuits represent 

one of the most important applications of multiple-valued logic [Ref. 13]. 

Definition 4 A symmetric function is a function that is unchanged by any 

permutation of variables. 



In this thesis, multiple-valued functions and their representation using decision 

diagrams are considered. Necessary and sufficient conditions for planarity in the ROMDD's 

of symmetric functions is shown. 



II. BACKGROUND 

In this chapter, conditions that cause wow-planarity in ROMDD's are considered. 

Lemma 1 If the ROMDD of a multiple-valued variable, two-valued function has at 

least two nodes associated with the lowest variable, then it is non-planar. 

Proof Assume xn labels the variable just above the terminal nodes. Consider a node 

r\ at the xn level. Because of the elimination rule, not all of its edges go to 0 and not all go 

to 1. For there to be no crossings among edges from r| to 0 and 1, the x„= 0 edge must go 

to the terminal node 0 and the xn = r -1 edge must go to the terminal node 1. That is, if all 

edges of« go to one node, then n is eliminated by the elimination rule. Since there are two 

nodes at the xn level, each satisfying this requirement, there is at least one crossing, as shown 

in Fig. 3. 

Q.E.D. 

This result allows, one to make the following observation. 

Definition 5 fis a voting function with f=j iff T <\x <T   > ^here 0 = T0 < Tx 

< ... £ 7M < Tr = n(r -1) + 1. g is a binary voting function on multiple-valued variables if 

it is a voting function with T2 = T3 = ... = Tr = n(r - 1) + 1. Associated with g is a weight- 

threshold vector (1,!,...,!;7), where T =TX. 



X n 

Figure 3. An ROMDD with at least one unavoidable crossing at the x„ level. 

Lemma 2 For any n > 1 andr > 2, there exists a function f with an ROMDD which 

is not planar for any ordering of the variables. 

Proof Consider a binary voting function/on multiple-valued variables, with weight- 

threshold vector (1,1,...,1;2). Fig. 4 shows the nodes associated with the last variable in the 

ordering. There are two, one that can be reached with a cumulative weight (CW) of 0 and 

the other with CW = 1. Note that there are r - 2 unavoidable crossings. Since/is totally 

symmetric, altering the variable order will not change the ROMDD. 

Q.E.D. 

10 



Figure 4. An ROMDD with r - 2 unavoidable crossings. 
{CW= Cumulative Weight) 

Now consider symmetric multiple-valued logic functions. A necessary and sufficient 

condition for planarity of ROBDD's of binary voting functions exists [Ref. 12]. This result 

is extended to functions with r-valued variables for r > 2. 

Lemma 3 Letßxv x^ ..., xn) be a binary voting function with n r-valued variables, 

where n > \ and r > 2. fhas a non-planar ROMDD iff/has a weight-threshold vector 

(1,1,...,1;7), where l<T<n(r- 1). 

11 



Proof (if) Let / be a symmetric threshold function with weight-threshold vector 

(1,1,...,1;7), where 1 < T< n{r -1). It is shown that this function has a non-planar ROMDD 

as follows. 

Assume, without loss of generality, that the order of the variables from top to bottom 

is xb Xj,..., and x„. Consider two assignments A and B of values to the upper n -1 variables 

gx,.=max(0,r-(r-l)) and g xb x» ..., and x„A such that £x. = max(o, T- {r -1)) and £x. = min((„ _ i)(r _ i), T-1), 

n-1 . 
respectively. Since all weights in the weight-threshold vector are 1, y x. is the number of 

i=i 

variables equal to 1 in the assignments A and B. 

Consider two assignments 4c„=o and 4r„=r-i to all variables xl5 x2,..., and x„ such that 

xn = 0 and r - 1 respectively, while the values assigned to xu x2, ..., and x,^ are made 

according to A. Since T> 1 and r > 2, assignment 4c„=o results in Y JC, < T •   Therefore, 
i=i 

n-l 

I 
j=l i=l 

/= 0 for AXn=0. However, 4c„=r-i results i*1 Y xt > T ■ Tnat is> if £x, = T- (r -1)>we nave 

£x. =T, and if gx. =0, then T<(r-1), since gx. = max(0,r-(r-l)) • It follows that 
i=i i=i i=i 

V x > j, since x„ = r -1. Therefore, /= 1 for 4c„=r-i • Because the value of x„ determines 
i=i 

12 



whether/= 0 or 1 with assignment^, it follows that A corresponds to a path to a node r\ x at 

the x„ level. Further, there is an edge from n. x to 0 labled 0 and an edge from r\ 1 to 1 labled 

r-\. 

By a similar argument, it can be shown that assignment B corresponds to a path to a 

node T|2 with an edge labled 0 going to 0 and an edge labled r -1 going to 1. 

It is now shown that r^ and r\2 are distinct nodes, by showing that the weight 

accumulated across x1} x2, ..., and xn.x is different for these two nodes. For 1 < T < r, r\1 is 

associated with a weight of max(0,J- (r - 1)) = 0, while r\2 is associated with a weight of 

rnin((w - l)(r - 1),T- 1) = T- 1 > 0, since n > 1 and T> 1. For r < T < (n - l)(r - 1), r|j is 

associated with a weight of max(0,r - (r - 1)) = T - (r - 1), while r\2 is associated with a 

weight of min((« - l)(r - V),T- \)-T- 1, which are different, since r > 2. For (n - l)(r - 1) 

<T<n(r - 1), Ti! is associated with a weight of max(0,J- (r - 1)) = T - (r - 1), while r\2 is 

associated with a weight of min((» - l)(r - \),T - 1) = (n - \)(r - 1), which are different, since 

(n - l)(r - 1) > T- (r - 1) for Tin this range. Thus T]1 and T)2 are distinct nodes for all T 

bounded by 1 < T <n(r - 1). Since there are two distinct nodes at the x„ level, Lemma 1 

applies and one may conclude that the ROMDD for/is non-planar. 

(only if) Assume that/has a non-planar ROMDD and assume on the contrary, that 

either T <, 1 or n(r -1) < T. JfT=l, then/has an ROMDD as shown in Fig. 5(a), which has 

no crossings, contradicting the assumption that/has a non-planar ROMDD. That is, the 

ROMDD for/is unique; no reordering of variables produces a different structure, specifically 

one with crossings. 

13 



If T < 1, then/= 1 and is represented by a single terminal node labeled 1 which is 

planar, contradicting the assumption. If T= n(r - 1), /has the ROMDD shown in Fig. 5(b) 

which is planar, again contradicting the assumption. If n(r - 1) < T, then/= 0 and is 

represented by a single terminal node labeled 0, which is again planar. Thus, it must be that 

\<T<n(r-\). 

Q.E.D. 

(a) (1,1,... 1;1) The OR function (b) (1,1,...1;«(M)) The AMD function 

Figure 5. Planar ROMDD's for Lemma 3. 

It is interesting that Lemma 3 cannot be stated for n and r outside the range n > 1 and 

r > 2. That is, if n = 1, then all ROMDD's for / are represented by the structure shown in 

Fig. 6, which is planar. 

Consider r = 2. One finds that the ROMDD for the function/associated with 

weight-threshold vector (1,1,1;2) as shown in Fig. 7 is planar. For this case, there exists a 

14 



weight-threshold vector (1,1,1; T) with 1 <T<n(r- l)that corresponds to anROMDD which 

is planar. Therefore, Lemma 3 does not apply when r = 2. 

a+l,a+2,...,r-l 

Figure 6. ROMDD structure for n = 1. 

Figure 7. Planar ROMDD for Tin the range 1 < T< n(r - 1) 
with r = 2. 

15 
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III. PLANAR ROMDD'S OF SYMMETRIC FUNCTIONS 

In this chapter, a necessary and sufficient condition for an r-valued symmetric function 

to have a planar ROMDD is shown. Such a condition has already been established for r = 2. 

Specifically, 

Lemma 4 [Ref. 12] A symmetric switchingfunction fhas a planar ROBDD ifff is 

a voting function. 

It is tempting to believe that this extends to multiple-valued functions. However, a 

counterexample exists for the same statement when the radix r exceeds 2. The function 

whose ROMDD is shown in Fig. 8 is symmetric and has a planar ROMDD. However, it is 

not a voting function. For example, xxx2 = 11, yields/= 0 while xxx2 = 02 yields/= 1. That 

is, two assignments of values to the variables with the same sum yield a different value of/ 

Further counterexamples are provided by Lemma 3 for the case where function output values 

are limited to 2. 

Definition 6   Let M= {a+l, a+2, ..., r-\) be a proper subset of logic values, 

where 0 < a < r - 2. Given an assignment A of values to the variables xlt x^ ..., andxn, let 

na(A) be the number of variables whose value is in M. A multiple-valued function f is a 

pseudo-voting function if there exists a value a such that f(A) depends only on na(A) and 

f(A)>f(A')ijfna(A)>-na(A'). 

17 



Jul 

2       %2 

Figure 8. A counterexample to the statement that a multiple-valued 
function has a planar ROMDD iff it is a voting function. 

In a multiple-valued pseudo-voting function, the variable values are partitioned into 

two parts. For some assignment^ of values to these variables, a count, na(A), is made of the 

number of variables that fall in the upper part of the variable logic value partition, and this 

determines the function value. A further restriction exists that the function value for some 

assignment A is never greater than for another assignment A', if na(A) <na(A'). 

Example 1 Consider the 3-valued function shown in Fig. 9. This function is a 

pseudo-voting function with a - 1. Hatched regions show variable values inM 

Note that, when r - 2, a pseudo-voting function is a conventional voting function. 

The function in Fig. 9 has an ROMDD of the form shown in Fig. 8 above, which is planar. 

18 



Value of na(A) $M    EM 
< >e-> 

Figure 9. Map of a pseudo-voting function. 

Consider/ a pseudo-voting function in which the variable values are divided into two 

contiguous parts, the upper part being M. Then,/is realized by the planar OMDD shown in 

Fig. 10 below. Here, all nodes are shown, even nodes that can be eliminated by the merging 

and elimination rules. Such an OMDD is called a complete symmetric decision diagram 

[Ref. 11]. A terminal node r\ is labeled by the number of variables that belong to M in the 

assignment A of values to variables that corresponds to the path from the root node to r\. 

The main result is, 

Theorem 1 A multiple-valued symmetric function fwith n > 1 variables has a planar 

ROMDD ifff is a pseudo-voting function. 
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"a(A) 

Figure 10. Complete symmetric decision diagram. 

Proof (if) Since/is a pseudo-voting function, functional logic values labeling the 

terminal nodes are in ascending order left to right. We can apply the merging and elimination 

rules to produce an ROMDD of/ For example, two adjacent nodes labeled by the same logic 

value and their parent node can be replaced by a single node. Both rules preserve planarity. 

Since the original OMDD, as given in Fig. 10, is planar, the resulting ROMDD is also planar. 

(only if) Consider a multiple-valued symmetric function/ that has a planar ROMDD. 

First, it is shown that every node with children has exactly two children. Then, it is shown 

that the distribution of edges to children is the same for every node. This allows/to be 

realized by a complete symmetric decision diagram, as shown in Fig. 10 with the terminal 

nodes labeled by logic values in ascending order left to right. It can then be concluded that 

/is a pseudo-voting function. 
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Consider a node r\ in the ROMDD off, as shown in Fig. 11 below. 

Or-1 

Figure ILA node n of the ROMDD of / 

Assume that r| is associated with xf and there is at least one child of r\ that is 

associated with x/+1. That is, there are at least two variables between r\ and a terminal node. 

Such a node exists because n > 1. Let r\ 0, r\ a, and r| rA be the children nodes of r\ associated 

with edges labeled by 0, a, and r-\, respectively where 0 < a < r - 1. 

First, r|0 and TIM are distinct. Indeed, x£r\0 = r\r_1, then edges labeled 1, 2, ..., and 

r - 2 from r\ must also go to T|0 = TIM. Otherwise, there are crossings. However, by the 

elimination rule, r\ would be eliminated. Second, r|0 and ri^j are not both terminal nodes. 

Indeed if they were both terminal nodes, they would have to be the same node, since by 

symmetry off, xpci+l = 0(M) and (M)0 must lead to the same node. However, as discussed 

earlier, r\0 and TI^J must be distinct. 
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Consider now the paths originating from r\a. Not all can go to r\ 0 M . Otherwise, n. a 

does not exist by the elimination rule. But, for the edges from r\a to go to nodes outside the 

diamond shown in Fig. 11 above, crossings are required. It follows, therefore, that either r|0 

= r\a or r\a = TJM , regardless of the value of a. Since the planarity of the ROMDD of/ 

excludes crossings among edges from r\ to its children, there exists an a such that r\0 = T\1 

=...= i\a and T\a+1 = r)a+2 =...= riM . 

It is now shown that a is the same for every node. Consider, for example, the root 

node and children nodes, as shown in Fig. 12 below. A claim is made that a' = a. On the 

contrary, suppose a' * a. First, suppose that a' < a. Then, r|4, which is reached when xtx2 

= a'a, must be the same as r|3, which is reached when XjX2 = a a\ since/is symmetric. Since 

r|3 = r]4, all children nodes of n. t are the same and, by the elimination rule, r| x does not exist. 

Next, suppose that a'> a. Since/is symmetric, the node corresponding to xxx2 = a{r-\) must 

be the same as the node corresponding to xxx2 = (r-l)a. Thus, it follows that a" >a. Since 

a'>a and a" >a, the node corresponding to x^x2 = a'a is x\4. Since xrx2 = aa' corresponds 

to r\3 and/is symmetric, 113 = 114, and all children nodes of rd are the same. By the 

elimination rule, r\ j does not exist. From this, a' = a is concluded. By a similar argument, 

it can be shown that a" = a, and that all left-going edges of all such nodes are labeled by {0, 

1,..., a). From this, it follows that all right-going edges are labeled by {a+1, a+2,..., r-\}. 

Therefore, the function realized by the ROMDD depends not on the specific value of a 

variablex; but on whether the value of JC, is in {0, 1,..., a] or in {a+l, a+2,..., r-\). 

Edges from a node r| can go only to the next level down (if the final value of the 

function is, up to this point, undetermined) or to a terminal node (if the final value of the 
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Figure 12. Root node r\ and its children nodes. 

function is, up to this point, completely determined). That is, certain variables cannot be 

skipped, and others not skipped causing the realized function to be dependent on some 

variables and not on others, since the function is symmetric. 

The OMDD (not necessarily reduced) that realizes/has the structure shown in Fig. 

10. The characteristic diamond shape, as shown in Fig. 13 below occurs because the function 

realized when xpcj+1= aß, where a e {0, 1,..., a} and ß e {a+1, a+2, ..., r-1} is the same 

as the function realized when xpci+1 = ß a. From Restriction 1, the terminal nodes of a planar 

ROMDD are labeled in ascending order left to right. The function realized by this ROMDD 

is a pseudo-voting function. 

Q.E.D. 
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Figure 13. Characteristic diamond shape in an ROMDD of 
a symmetric function. 

By comparing Lemma 3 with Theorem 1, it can stated, 

Corollary 1 A two-valued function with multiple-valued variables associated with 

weight-threshold vector (1,1,..., 1; T) is a pseudo-voting function iffT=\ovn(r-\). 

This chapter ends with counting pseudo-voting functions. 

Lemma 5 The number of pseudo-voting functions with n variables and r values is 

-^pseudo-voting       V ) 

fn+r^ 

yn + ly 

Proof The ways to configure a complete symmetric decision diagram of a pseudo- 

voting function are counted. First, there are r - 1 ways to partition the r logic labels of the 
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outgoing edges from each node. Second, the number of ways to assign logic values in 

ascending order left to right of the terminal nodes is the number of ways to choose n + 1 

objects (the terminal nodes in a complete symmetric decision diagram of the function) from 

the r logic labels {0, 1, ..., r-l} with repetition, which is 

fn + r+l-l\ (n + rs 

71 + 1 n + lj 

Q.E.D. 

It is interesting to further compare the number of pseudo-voting functions with the 

number of symmetric functions on n variables and r logic values. Since the functional value 

of a symmetric function is the same no matter how the values are distributed among the 

variables, the number of such functions is the number of logic values, r, raised to the number 

of ways to select a group of logic values for the variables. Since the number of ways to 

choose r logic values for the n variables from the r possible values {0, 1, ... , r-l} with 

(n+r-\\ repetition is 
V     n     J 

, the number of multiple-valued symmetric functions on n variables 

and r values is   ("+r l\: When r = 2, this expression yields for the number of symmetric 
r\  "  ) 

switching functions, 2"+1. Therefore, from Theorem 1 it can be stated that, 

Lemma 6 The fraction oj'r-valuedsymmetric functions that have planar ROMDD's 

approaches Oasn approaches infinity, where n is the number of variables. 
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IV. AVERAGE NUMBER OF NODES IN ROMDD'S 

Consider now the average number of nodes, Ar{n) in ROMDD's of pseudo-voting 

functions. In a complete symmetric decision diagram of an r-valued pseudo-voting function 

on n variables, there are 

,   ^       /     n    (n + 2)(n + l) 
1 + 2+...+(« +1) = - - 

2 

nodes. However, sequences of identical logic values yield nodes with identical children nodes 

that can be eliminated by the elimination rule. For example, Fig. 14 below shows how a 

group of three l's and a group of two 3's reduce the node count (Fig. 14a) of a 4-valued 5- 

variable pseudo-voting function. Specifically, the group of three l's results in the replacement 

of six nodes (dotted triangle) in the complete symmetric decision diagram of / by one node 

in the ROMDD (Fig. 14b) off, while the group of two 3's results in the replacement of three 

nodes (dashed triangle) by one node. 

In general, if there is a string of m identical logic values as labels of terminal nodes, 

,   „       / (m + l)m 
l + 2+...+(m-l) + m = - — 

2 

nodes in the complete symmetric decision diagram are replaced by one node in the ROMDD. 

The average number of nodes, Ar(n) in ROMDD's of pseudo-voting functions is 

derived as follows, 
N -N A  /   \ complete " reduction 

J pseudo- voting 
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(b) 

Figure 14. How groups of logic values reduce the nodes in OMDD's of pseudo-voting 
functions. 

where -A^p,^ is the total number of nodes in complete symmetric decision diagrams of 

pseudo-voting functions, and A^a^on is the total reduction of nodes which occurs because of 

consecutive logic values on terminal nodes, and from Lemma 5, Mpseudo.voting is the number of 

pseudo-voting functions. There are 

M pseudo-voting (r-1) 
yn + lj 

/--valued «-variable pseudo-voting functions, and, thus, this many complete symmetric 

decision diagrams. Therefore, the total number of nodes in complete symmetric decision 

diagrams of pseudo-voting functions is 

-"complete — V       V 

(« + 2)0 + 1) 
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^reduction is calculated as follows. Any logic value can occur m times at the terminal 

nodes of a complete symmetric decision diagram, where 0 < m < n+1. As shown previously, 

m(m+l)/2 nodes are replaced by a single node, yielding a reduction of m(m+l)l2 - 1 nodes. 

There are 

'(r-l) + (» + l-»i)-f 

^ (n +1 - m)        j 

ways to choose a distribution of r - 1 remaining logic values to the n + 1 - m remaining 

terminal nodes. Specifically, these are chosen by selecting n + 1 - m objects (terminal nodes) 

from r -\ objects (remaining logic values) with repetition. Since this is true for any of the 

r logic values and for any of the r - 1 ways to partition r logic values into two parts 

corresponding to labels on outgoing edges of each node, i^reducti0n becomes, 

^reduction = 1/^ ~ l\     \ ~ l 
'(r-l) + (/i + l-/»)-f 

(n + l-m) 

This sum is solved using generating functions.   First, it is convenient to substitute i 

m-\. Doing this and rearranging yields, 

n-~(r,     ,v,.,    ,AY(r-l) + («-/)-f 
"— -J&'-W^h     (-0 

A generating function G(x) in which the coefficient of xf in the above sum is 

G(x)=A(x)B(x), 

29 



where the coefficient of x' inA(x) is 

r-(r-l)(i2
+3i) 

and the coefficient of xJ in B(x) is 

>-i)+7-r 
j 

A(x) can be calculated by observing that the generating function of/2 is 

x2 +x 

(l-x) 

while the generating function for z is 

3 ' 

\2  ' (i-xy 

To see this, differentiate both sides of (1 - x)'1 = 1 + x + x2 + x3 + ... This yields (l-x)"2 

= 1 + 2x + 3x2 + ... Multiplying both sides by x yields the generating function for i. 

Differentiating both sides of this result and multiplying both sides by x yields the generating 

function for i2. Therefore, 

A(x) = r(r-1) 2x-x2 

(l-x) 

The generating function for B(x) is 

B(x)=      l 

3   • 

(i-*r 
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Therefore, 

G(x) = r(r-1) 
2x-x 
(l-x) r+2 

The coefficient of x" in this expression is 

auction ='"(''-I) 
(r + 2) + («-l)-r 

n-l 

'(r + 2) + (w-2)-f 
«-2 

= r(r-l) 
r 

L V 

n + r 

n-l, 

n + r-V 

n-2   , 

Now Ar{n) can be calculated as, 

Lemma 7   The average number of nodes in ROMDD's of r-valued n-variable 

pseudo-voting functions is 

Ar{n) = 

n + r (n + 2)(n + l) 

„H + lJv 2 
-r 

(n + r" 

n-l 

'n + r-f 

, "-2 , 
n + r 
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Consider the expression for Ar(ri) when n is large. ./Vreduction can be written as 

^reduction =K^-1) 

(n + r)(n + r-l)...n    (n + r -l)(n + r -2)...(n -l) 

(r + 1)! (r + 1)! 

When n is large compared to r, each term in the numerator is approximately n, and 

so, for large n, this expression is 

^reduction =K>"-1) 

f n^   ^ 
for large n»r 

Since 
rn + r\ «r-l 

v«+ly 

_IL_when n is large, -4r(>0 can be approximated as shown in 
(r-1)! 

Lemma 8 below. 

Lemma 8   The average number of nodes in ROMDD's of r-valued n-variable 

pseudo-voting functions for "—»°° is, 

Ar{n)„^ * n5 
(\        1    A 

V2     (' + !), 

where f(n) ~g(n) means Um = 1. 
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When r = 2, a pseudo-voting function is a conventional voting function and the 

average number of nodes is n2/6. It is interesting to compare this result with the average 

number of nodes in the ROMDD's of r-valued n-variable symmetric functions. It is shown 

in [Ref. 5] that this number is rflr\ , when n is large. That is, the average number of nodes 

in both cases is polynomial in n. However, the average number of nodes for general 

symmetric multiple-valued functions grows at a greater rate than the average for planar 

symmetric multiple-valued functions, suggesting that planarity restricts the number of nodes 

possible. It follows that the latter require less storage in computer representations. 
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V. WORST CASE NUMBER OF NODES IN ROMDD'S 

In this chapter, the condition which causes the worst case number of nodes will be 

established, and an expression for the number of nodes will be derived. 

When the average number of nodes was calculated in Chapter IV, all possible pseudo- 

voting functions and their ROMDD's were considered and counted to derive the expression 

for the average as stated in Lemma 7. For the worst case number of nodes, only one 

ROMDD has to be considered. 

The idea of node reduction from Chapter IV can be applied here to calculate the worst 

case number of nodes in an ROMDD of an /--valued, «-variable pseudo-voting function. 

Before node reduction, a symmetric diagram is complete, and contains all nodes. The worst 

case number of nodes will involve the minimal node reduction possible within a complete 

symmetric diagram. 

All r-valued, «-variable pseudo-voting functions can be represented by a complete 

symmetric decision diagram (OMDD) as shown in Fig. 14a. Node reduction converts the 

diagram into its reduced representation (ROMDD). All node reduction begins at the terminal 

nodes of a complete symmetric decision diagram, and with r less than the number of terminal 

nodes (r < « + 1), there will always be some node reduction. 

The worst case number of nodes, WCr(n) is derived as follows. 

Let 7w, be the number of terminal nodes labeled by logic value /' in a complete 

symmetric decision diagram. Thus, ym=B + ] 
r-1 

X< 
i=0 
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In preparation for the calculation of WCr(ri), it is stated that, 

Lemma 9 The worst case number of nodes in an ROMDD of an r-valued, n-variable 

pseudo-voting function occurs when, ntj-l < mt < mß-l, for all logic values i andj, such that 

0 < i<j < r-\. 

Proof On the contrary, assume there exists an /' andy such that /»• < mt. - 2. For 

example, the pseudo-voting function whose OMDD is represented in Fig. 14a, has the 

property, ntj = mi-2 for 7=1 andy = 0. 

Now calculate the reduction in nodes achieved when mt terminal nodes are labeled by 

logic value i and mj terminal nodes are labeled by logic value j, in a complete symmetric 

decision diagram. 

For i, the reduction i?, is 

Rf = (1 + 2+...+mt)-l = — — -1. 

For/', the reductionR, is 

(m,. +l)m. 
Ri=(l + 2+...+mi)-l = ^^—J-^--l. 

Thus, the total reduction RT becomes 

Rj. = R+R Ami+l>i 1|K
+1H l 

m2 + m2 + w, + m, 
—       J     -■'-—J--2. (a) 

2 
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Let m^ = (m, + m)l2. Assume m, > mj, and let A = (m,. - m)l2. Then, m, = mmg + A 

and rrij = mmg - A. Substituting these into (a) yields 

p _(^+A)2+(^-A)2+K^ + A)+K^-A)  n 
V 2 

^+^2+2A2+m^ + ^^    ^ 

mJ+g+m^-2. 

With (jn,+m) held constant for a given z andj, mmg does not change, and the minimal 

reduction occurs when A is minimal. With m] < ml - 2, A > 1. A smaller reduction (and thus 

a larger number of nodes) is achieved with a smaller A. Thus, w, <mi-2 is not the worst 

case. 

Q.E.D. 

7is It follows from Lemma 9 that the minimum total reduction over all m and m 

achieved with the most uniform distribution of logic values to terminal nodes. That is, the 

distribution of m/s yielding the least reduction occurs when 

n + \ 
mt « ,    as « -> oo,    for 0 < i < r -1. 
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The total reduction for this worst case is 

'OJ+1   Y«+f 

^■-WC=K(l+2+...+^)-l] = r 

1 n n + 
\r «r 

/     2 \ 

V20 2r 

The total number of nodes before reduction is 

,     ,.    (w + 2)(» + l)    w 
#r =1 + 2+...+(« + !) = - -* —   forlargen. 

Therefore, 

Lemma 10   The worst case number of nodes in an ROMDD of an r-valued, n- 

variable pseudo-voting function is 

n~    n2    n2 (.    \\ 
WCXn) = NT-RT_wc*—- — *-\\--j forlargen. 

When r = 2, 

n 
WCr{ri) = —   for large n. 
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VI. PLANARITY OF FIBONACCI FUNCTIONS 

The famous Fibonacci sequence (1, 1, 2, 3, 5, 8,....) in which each term is the sum 

of the preceding two, occurs frequently in nature. Specifically, the «* Fibonacci number Fm 

is related as Fn=F^ + F^, where Fl=F2=l. Leonardo Fibonacci (1170-1240) used it to 

describe the sizes of successive generations in an ideal rabbit population. From this sequence, 

the ancient Greeks derived the Golden Ratio as the convergence of the ratios of successive 

(I+VS) 
terms in the sequence. They used this ratio,  «1.6:1, in proportioning their temples 

and public buildings. 

The Fibonacci sequence has been a basis for extensive research for hundreds of years 

with an entire journal devoted to the subject, e.g. The Fibonacci Quarterly. 

So far, this paper has considered symmetric functions. This chapter examines 

Fibonacci functions which are primarily non-symmetric threshold functions but nonetheless 

important and interesting. Some recent work has been performed in the binary decision 

diagram representation of Fibonacci functions [Ref. 14]. This chapter shows necessary and 

sufficient conditions for planarity in the ROMDD representation of multiple-valued variable, 

two-valued Fibonacci functions. 

Lemma 11 The sum of the terms in a Fibonacci sequence is related as, 

t^ = Fn+2-l for«>l. (1) 
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Proof (by induction) For w = 1, V p - p and Fn+2 - l=F3 -1=2-1 = 1. 
i=i 

Assume that V p-p    -1 is true for n = m. It is then shown that the expression 
i=i 

is true for n = m + 1. 

m+l 
Consider V77 , which can be expressed as, 

i=l 

m+l m 

Z^ = Z^+Fm+i> (2) 
1=1 1=1 

where, from the inductive assumption, 

Y,Fi=Fm+2-\. (3) 
i-1 

Substituting (3) into (2) yields 

m+l 

z 
1=1 
Z^= ^m+2-l + ^m+l- (4) 

However, from the Fibonacci recurrence relation, Fm+2 + Fm+1 = Fm+3 and (4) becomes 

m+l 

1^=^,-1, 
1=1 
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which is (1) with n = m + 1. This proves the hypothesis. 

Q.E.D. 

Definition 7 A Fibonacci function is a threshold function with weight-threshold 

vector {F„ F^, F^ ..., F-j, Fv- T), where Ft is the i'h Fibonacci number and the threshold (T) 

is in the range 0 < T<Fn+2 for binary-valued function variables and in the range 0 < T < 

(r - l)[Fn+2 -1] for multiple-valued function variables. 

Lemma 12 The ROBDD of a Fibonacci function with variables ordered x^ x^ ..., 

xnA, andxn is planar for any n. 

Proof [Ref. 14] shows a construction of the ROBDD of a Fibonacci function using 

three types of structures. Each structure and its relation to other structures is planar. Thus, 

the ROBDD of a Fibonacci function is planar. 

Q.E.D. 

Fibonacci functions with multiple-valued variables are an interesting extension to the 

binary case. A necessary and sufficient condition for planarity in the ROMDD's of such 

functions is derived for r > 2. The demonstration begins with a definition of maximum 

weighted sum. 
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Definition 8 The maximum weighted sum (MWS) of a Fibonacci function is 

A0VS = (r-Yj£Fi. 
i=\ 

The following expression evolves from Definition 8 and Lemma 11, 

A^S = (A-l)X^ = (r-l)[Fn+2-l]. 
i=i 

From Fig. 15, it can be seen that MWS has a graphical interpretation in the ROMDD 

of a Fibonacci function. Specifically, it is the cumulative weight associated with the path from 

the root node to the 1 terminal node where x1 = x2 = ... = x„ = r -1. 

The demonstration proceeds from the "bottom-up." First, the maximum number of 

nodes at the lowest (x,) level is derived. This derivation shows that the xn level has more than 

one node under certain conditions. Next, it is shown how more than one node at the x„ level 

causes crossings and thus non-planarity. Finally, the conditions for planarity are established. 

Lemma 13 Letfbe a two-valued Fibonacci function with r>2 andn > 1. For any 

given threshold (T), the ROMDD off has a maximum ofr - 1 nodes at the x„ level. This 

maximum number of nodes occurs when T is in the range, (r - 1) < T < MWS - (r - 2). 

Otherwise, there are incrementally one less node, reaching a minimum of one, at the x„ level 

as T decreases from (r - 2) -> 1 or increases from [MWS - (r - 3)] -» MWS - 
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1=1 

Fn-\+Fn-2-Fn 

2 = F„ 

l=Fn 

l=Fi 

The maximum weighted sum (MWS) 
occurs at the 1 terminal node 

Figure 15. A partial ROMDD of a Fibonacci function showing how MWS is 
achieved. 

Proof Every node at the xn level has an edge labeled 0 that must go to the 0 terminal 

node and an edge labeled r - 1 that must go to the 1 terminal node. The proof of this is 

similar to the proof of Lemma 1. 

Since no two edges originating from the same node may cross, there must be an a 

such that edges from any node r\ at the xn level labeled 0, 1, ..., a go to the 0 terminal node 

and edges labeled a + 1, a + 2, ..., r - 1 go to the 1 terminal node. It is known that 0 < a < 

r-2; therefore, there are only r -1 possible values for a. No two nodes can have the same 

a (by the Merging Rule, these two nodes would be merged). Thus, there are at most r - 1 

nodes at the x„ level. 

43 



The Fibonacci weight (Fx) at the lowest level(x„) of the ROMDD is always 1, so x„ 

contributes only 0, 1,..., or r -1 to the weighted sum, as shown in Fig. 16. 

The cumulative weights (CW) associated with nodes at the x„ level are T-1, T- 2,..., 

T-(r - 1) as shown in Fig. 16. A CW outside this range is never achievable at the xn level 

because the maximum contribution by xn = r -1 cannot exceed the threshold with CW< T- 

(r -1), and the threshold will already be met with CW> T-\. This causes the xn level to be 

"skipped" with edges proceeding directly to the 0 and 1 terminal nodes, respectively. 

Therefore, a CW is achievable in the range, T - (r - 1) < CW < T - 1 dependent upon the 

chosen T. 

If 1 < T < r - 1, then each CW at the x„ level must be in the range, 0 < CW < T - 1 

because rmn(CW) > 0 at the x„ level as T decreases to 1. This range for T causes {(T-1) - 

0) + 1 = T distinct values for CW and thus T distinct nodes at the x„ level for 1 < T< r -1. 

If MWS - (r - 2) < T < MWS, then each CW at the x„ level must be in the range, T - 

(r -1) < CW < MWS - (r -1) because max(CW) =MWS -(r-l) at the x„ level as ^increases 

to the maximum weighted sum (MWS). The expression for max(CW) at the xn level is 

attributable to the successive contributions of xx = x2 = ... = xn.x = r -1 which result in a value 

at the x„ level that is r - f less than the MWS because F1=l (see Fig. 15). This range for T 

causes [(MWS - (r - 1)) - (T - (r - 1))] + 1 =MWS -T+\ distinct values for CW and thus 

MWS -T+l distinct nodes at the x„ level for MWS -(r-2)<T< MWS. 

Now for the remaining range of T, (r -1) < T < MWS - (r - 2), the entire range of CW 

at thex„ level, T- (r -1) < CW < T-1, is achievable because min(CW) > 0 and max(CW) < 
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MWS-(r-1) both hold for this range of T. This range of T causes (T- l)-(T-(r-1))+ 1 

= r -1 distinct values for CW and thus r -1 distinct nodes at the x„ level. 

Sincer-1 is greater than T for 1 < T<r-1 and greater than MWS- T+ 1 forMWS- 

(r-2)<T< MWS because r > 2, the maximum number of nodes at the xn level is r - 1 when 

7 is in the range, (r -1) < T < MWS - (r - 2). 

Q.E.D. 

From the proof of Lemma 13, it is shown that a two-valued Fibonacci function with 

r > 2 and n > 1 has T distinct nodes at the x„ level for 1 < T < r -1 and MWS - T + 1 distinct 

nodes at the xn level for MWS - (r - 2) < T <, MWS. These ranges for T show that there is 

more than one node at the x„ level unless T= 1 or T=MWS. From Lemma 1, two or more 

nodes at the xn level (associated with the lowest variable) creates at least one crossing, thus 

non-planarity. Therefore, 

Theorem 2 Let f be a two-valued Fibonacci function with r > 2 and n > 1. fis 

planar iff T = 1 orT = Maximum Weighted Sum (MWS). 

From Lemma 3, similar results were obtained for binary voting functions. Specifically, 

the restrictions placed on the value of T to obtain planarity in Lemma 3 and Theorem 2 

represent the AND and OR functions as shown in Fig. 5. 

45 



F, = l 

0 

x n 

1 
Figure 16. The xn level of an ROMDD of a Fibonacci function. 
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VII. CONCLUSION 

In this thesis, the planarity of ROMDD's of multiple-valued symmetric functions has 

been considered. The main result is that the ROMDD of a symmetric multiple-valued 

function/is planar if and only if/is a pseudo-voting function. A major source of delay in 

VLSI is interconnect. Planarity in ROMDD's reduces delay in digital circuits, an important 

consideration in their design, by preventing crossings among interconnect in VLSI. Insights 

gained from this facilitated the calculation of the average and worst case number of nodes in 

planar ROMDD's of r-valued symmetric functions on n variables. It was shown that the 

average number of nodes for general symmetric multiple-valued functions grows at a greater 

rate than the average for planar symmetric multiple-valued functions, suggesting that planarity 

restricts the number of nodes possible. It follows that the latter require less storage in 

computer representations. 

Other results include a characterization of threshold values for which a two-valued 

voting function on r-valued variables is planar. A similar result is obtained for the unique 

class of two-valued Fibonacci functions with r-valued variables. 

An outcome of this work is the observation that the fraction of symmetric functions 

that are planar approaches 0 as the number of variables increases for any radix r > 2. It is 

fully expected that this is true of the general functions; that is, it is conjectured that the 

fraction of multiple-valued functions which have planar ROMDD's approaches 0 as the 

number of variables approaches infinity. This suggests that planar ROMDD's are rare among 
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all multiple-valued functions. However, important functions indeed have planar ROMDD's, 

e.g. AND, OR, and general voting functions. 

The results can be extended in a number of ways. Restriction 1 has allowed specific 

statements to be made about the planarity of a class of functions. Allowing other 

permutations of edge assignments and/or terminal node assignments enlarges the class of 

functions with planar ROMDD's considerably. This class can be enlarged further by allowing 

unary functions along the edges. That is, two nodes can be combined if their function differs 

by a mapping among function (output) values. In binary, such mappings are described as 

complemented edges. 
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